首页> 外文OA文献 >Fundamental limit of sample generalized eigenvalue based detection of signals in noise using relatively few signal-bearing and noise-only samples
【2h】

Fundamental limit of sample generalized eigenvalue based detection of signals in noise using relatively few signal-bearing and noise-only samples

机译:基于样本广义特征值检测的基本极限   噪声信号使用相对较少的信号承载和仅噪声样本

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The detection problem in statistical signal processing can be succinctlyformulated: Given m (possibly) signal bearing, n-dimensional signal-plus-noisesnapshot vectors (samples) and N statistically independent n-dimensionalnoise-only snapshot vectors, can one reliably infer the presence of a signal?This problem arises in the context of applications as diverse as radar, sonar,wireless communications, bioinformatics, and machine learning and is thecritical first step in the subsequent signal parameter estimation phase. The signal detection problem can be naturally posed in terms of the samplegeneralized eigenvalues. The sample generalized eigenvalues correspond to theeigenvalues of the matrix formed by "whitening" the signal-plus-noise samplecovariance matrix with the noise-only sample covariance matrix. In this articlewe prove a fundamental asymptotic limit of sample generalized eigenvalue baseddetection of signals in arbitrarily colored noise when there are relatively fewsignal bearing and noise-only samples. Numerical simulations highlight the accuracy of our analytical prediction andpermit us to extend our heuristic definition of the effective number ofidentifiable signals in colored noise. We discuss implications of our resultfor the detection of weak and/or closely spaced signals in sensor arrayprocessing, abrupt change detection in sensor networks, and clusteringmethodologies in machine learning.
机译:统计信号处理中的检测问题可以简洁地表示:给定m个(可能)信号承载,n维信号加噪声快照向量(样本)和N个统计独立的仅n维噪声快照向量,可以可靠地推断出存在这个问题出现在雷达,声纳,无线通信,生物信息学和机器学习等各种各样的应用环境中,并且是随后信号参数估计阶段中至关重要的第一步。信号检测问题可以自然地根据样本广义特征值提出。样本广义特征值对应于通过用纯噪声样本协方差矩阵“白化”信号加噪声样本协方差矩阵而形成的矩阵的特征值。在本文中,我们证明了当信号承载样本和纯噪声样本相对较少时,基于样本广义特征值的信号在任意彩色噪声中的检测的基本渐近极限。数值模拟突出了我们的分析预测的准确性,并允许我们扩展对彩色噪声中可识别信号的有效数量的启发式定义。我们讨论了我们的结果对于在传感器阵列处理中检测弱和/或近距离信号,在传感器网络中进行突然变化检测以及在机器学习中进行聚类方法的意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号